cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327859 a(n) = A276086(A003415(n)), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 2, 2, 9, 2, 18, 2, 25, 5, 10, 2, 225, 2, 30, 15, 21, 2, 750, 2, 625, 45, 50, 2, 525, 45, 150, 3750, 21, 2, 14, 2, 18375, 75, 250, 25, 49, 2, 750, 225, 735, 2, 630, 2, 875, 210, 1250, 2, 385875, 75, 1050, 375, 13125, 2, 36750, 225, 1029, 1125, 14, 2, 1029, 2, 42, 5250, 2941225, 125, 98, 2, 1225, 1875, 78750
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Sequence contains only terms of A048103.
Are there fixed points other than 1, 2, 10, 15, 5005? (There are none in the range 5006 .. 402653184.) See A369650.
Records occur at n = 0, 2, 4, 6, 8, 12, 18, 27, 32, 48, 64, 80, 144, 224, 256, 336, 448, 480, 512, 1728, ... (see also A131117).
a(n) and n are never multiples of 9 at the same time, thus the fixed points certainly exclude any terms of A008591. For a proof, consider my comment in A047257 and that A003415(9*n) is always a multiple of 3. - Antti Karttunen, Feb 08 2024

Crossrefs

Cf. A003415, A008591, A048103, A131117, A276086, A327858, A327860, A341517 [= mu(a(n))], A341518 (k where a(k) is squarefree), A369641 (composite k where a(k) is squarefree), A369642.
Cf. A370114 (where a(k) is a multiple of k), A370115 (where k is a multiple of a(k)), A369650.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327859(n) = A276086(A003415(n));

Formula

a(n) = A276086(A003415(n)).
a(p) = 2 for all primes p.