cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327862 Numbers whose arithmetic derivative is of the form 4k+2, cf. A003415.

Original entry on oeis.org

9, 21, 25, 33, 49, 57, 65, 69, 77, 85, 93, 121, 129, 133, 135, 141, 145, 161, 169, 177, 185, 201, 205, 209, 213, 217, 221, 237, 249, 253, 265, 289, 301, 305, 309, 315, 321, 329, 341, 351, 361, 365, 375, 377, 381, 393, 413, 417, 437, 445, 453, 459, 469, 473, 481, 485, 489, 493, 495, 497, 501, 505, 517, 529, 533, 537
Offset: 1

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

All terms are odd because the terms A068719 are either multiples of 4 or odd numbers.
Odd numbers k for which A064989(k) is one of the terms of A358762. - Antti Karttunen, Nov 30 2022
The second arithmetic derivative (A068346) of these numbers is odd. See A235991. - Antti Karttunen, Feb 06 2024

Crossrefs

Setwise difference A235992 \ A327864.
Setwise difference A046337 \ A360110.
Union of A369661 (k' has an even number of prime factors) and A369662 (k' has an odd number of prime factors).
Subsequences: A001248 (from its second term onward), A108181, A327978, A366890 (when sorted into ascending order), A368696, A368697.
Cf. A003415, A064989, A068346, A068719, A327863, A327865, A353495 (characteristic function).

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    isA327862(n) = (2==(A003415(n)%4));
    k=1; n=0; while(k<105, if(isA327862(n), print1(n, ", "); k++); n++);