cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327872 Total number of nodes in all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (-1,1), and (1,-1) with the restriction that (-1,1) and (1,-1) are always immediately followed by (0,1).

Original entry on oeis.org

1, 4, 21, 148, 980, 6444, 41888, 270088, 1730079, 11023480, 69930146, 441988260, 2784820519, 17499028820, 109701885600, 686313858480, 4285914086100, 26721615383496, 166361793070466, 1034375862301240, 6423778211164860, 39850734775066644, 246976735839649218
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2019

Keywords

Crossrefs

Cf. A327871.

Programs

  • Maple
    b:= proc(x, y, t) option remember; (p-> p+[0, p[1]])(`if`(
           min(x, y)<0, 0, `if`(max(x, y)=0, [1, 0], b(x-1, y, 1)+
          `if`(t=1, b(x-1, y+1, 0)+b(x+1, y-1, 0), 0))))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Function[p, p + {0, p[[1]]}][If[Min[x, y] < 0, {0, 0}, If[Max[x, y] == 0, {1, 0}, b[x - 1, y, 1] + If[t == 1, b[x - 1, y + 1, 0] + b[x + 1, y - 1, 0], 0]]]];
    a[n_] := b[n, n, 0][[2]];
    a /@ Range[0, 25] (* Jean-François Alcover, May 13 2020, after Maple *)

Formula

a(n) ~ sqrt(113 - 179/sqrt(13)) * (70 + 26*sqrt(13))^n * sqrt(n) / (sqrt(Pi) * 2^(3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Oct 12 2019