cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327881 Number of set partitions of [n] with distinct block sizes and one of the block sizes is 2.

Original entry on oeis.org

0, 0, 1, 3, 0, 10, 75, 126, 196, 1548, 15525, 39820, 161106, 358722, 3705884, 46623045, 142988280, 768721504, 3560215293, 12250746432, 144581799790, 2542575063630, 8955836934660, 55657973021431, 319349051391228, 1983548989621200, 7898257536096850
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2019

Keywords

Comments

Sum of multinomials M(n; lambda), where lambda ranges over all integer partitions of n into distinct parts and one part is 2.

Examples

			a(2) = 1: 12.
a(3) = 3: 12|3, 13|2, 1|23.
a(4) = 0.
a(5) = 10: 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234.
		

Crossrefs

Column k=2 of A327869.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 b(n$2, 0)-b(n$2, 2):
    seq(a(n), n=0..29);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i - 1], k] Binomial[n, i]]]];
    a[n_] := b[n, n, 0] - b[n, n, 2];
    a /@ Range[0, 29] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)