A327885 Number of set partitions of [n] such that at least one of the block sizes is 2.
0, 0, 1, 3, 9, 35, 150, 672, 3269, 17271, 97155, 578985, 3654750, 24331320, 170074177, 1244911605, 9520843575, 75890001665, 629104453236, 5413637745144, 48277814341765, 445463898405225, 4246785220234557, 41775507558584283, 423516880995944532
Offset: 0
Keywords
Examples
a(2) = 1: 12. a(3) = 3: 12|3, 13|2, 1|23. a(4) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34. a(5) = 35: 123|45, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 145|23, 14|235, 14|23|5, 15|234, 15|23|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add( `if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n)) end: a:= n-> b(n, 0)-b(n, 2): seq(a(n), n=0..27);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[If[j == k, 0, b[n - j, k]* Binomial[n - 1, j - 1]], {j, n}]]; a[n_] := b[n, 0] - b[n, 2]; a /@ Range[0, 27] (* Jean-François Alcover, May 04 2020, after Maple *)