A327890 Number of colored integer partitions of n using all colors of a 2-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order.
0, 0, 3, 6, 21, 42, 90, 176, 348, 640, 1203, 2152, 3848, 6692, 11701, 19968, 33966, 56952, 95300, 157326, 258736, 421240, 683804, 1099830, 1762867, 2805154, 4446826, 7005486, 10999634, 17172894, 26716627, 41362952, 63837722, 98079482, 150216194, 229155682
Offset: 0
Keywords
Examples
a(3) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..4000 (terms 0..1000 from Alois P. Heinz)
Crossrefs
Column k=2 of A309973.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)* binomial(binomial(k+i-1, i), j)*j!, j=0..n/i))) end: a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k))(2): seq(a(n), n=0..44);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]]; a[n_] := With[{k = 2}, Sum[b[n, n, i](-1)^(k-i)Binomial[k, i], {i, 0, k}]]; a /@ Range[0, 44] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)