cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327890 Number of colored integer partitions of n using all colors of a 2-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order.

Original entry on oeis.org

0, 0, 3, 6, 21, 42, 90, 176, 348, 640, 1203, 2152, 3848, 6692, 11701, 19968, 33966, 56952, 95300, 157326, 258736, 421240, 683804, 1099830, 1762867, 2805154, 4446826, 7005486, 10999634, 17172894, 26716627, 41362952, 63837722, 98079482, 150216194, 229155682
Offset: 0

Views

Author

Alois P. Heinz, Sep 29 2019

Keywords

Examples

			a(3) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
		

Crossrefs

Column k=2 of A309973.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*
           binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))
        end:
    a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
    seq(a(n), n=0..44);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]];
    a[n_] := With[{k = 2}, Sum[b[n, n, i](-1)^(k-i)Binomial[k, i], {i, 0, k}]];
    a /@ Range[0, 44] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)