A327893 Minesweeper sequence of positive integers arranged in a hexagonal spiral.
4, -1, -1, 3, -1, 3, -1, 3, 2, 4, -1, 3, -1, 3, 2, 2, -1, 3, -1, 2, 0, 2, -1, 3, 1, 2, 2, 2, -1, 2, -1, 1, 1, 1, 2, 3, -1, 2, 0, 1, -1, 4, -1, 1, 1, 2, -1, 1, 0, 1, 2, 3, -1, 3, 1, 0, 0, 1, -1, 4, -1, 1, 0, 0, 1, 3, -1, 2, 2, 2, -1, 2, -1, 3, 1, 1, 0, 1, -1, 3
Offset: 1
Examples
Consider a spiral grid drawn counterclockwise with the largest number k = A003219(n) = 3*n*(n+1)+1 in "shell" n, and each shell has A008458(n) elements: 28--27--26--25 / \ 29 13--12--11 24 / / \ \ 30 14 4---3 10 23 / / / \ \ \ 31 15 5 1---2 9 22 \ \ \ / / 32 16 6---7---8 21 \ \ / 33 17--18--19--20 ... \ / 34--35--36--37--38 1 is not prime and in the 6 adjacent cells 2 through 7 inclusive, we have 4 primes, therefore a(1) = 4. 2 is prime therefore a(2) = -1. 4 is not prime and in the 6 adjacent cells {1, 3, 12, 13, 14, 5} there are 4 primes, therefore a(4) = 4, etc. Replacing n with a(n) in the plane described above, and using "." for a(n) = 0 and "*" for negative a(n), we produce a graph resembling Minesweeper, where the mines are situated at prime n: 2---2---2---1 / \ * *---3---* 3 / / \ \ 2 3 3---* 4 * / / / \ \ \ * 2 * 4---* 2 2 \ \ \ / / 1 3 3---*---3 . \ \ / 1 *---3---*---2 ... \ / 1---2---3---*---2
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10621 (60 concentric hexagons).
- Michael De Vlieger, Minesweeper style hexagonal plot of 1261 terms, replacing -1 with n in a black circle, and 0 represented by blank space.
- Michael De Vlieger, Hexagonal plot of 30301 terms, (100 concentric hexagons), color coded.
- Michael De Vlieger, Hexagonal plot of 120601 terms, (200 concentric hexagons), color coded.
- Michael De Vlieger, Plot of 469 terms, with 12 concentric hexagons smoothed into concentric rings, color coded.
- Michael De Vlieger, Plot of 120601 terms, with 200 concentric hexagons smoothed into concentric rings, color coded.
Programs
-
Mathematica
Block[{n = 6, m, s, t, u}, m = n + 1; s = Array[3 #1 (#1 - 1) + 1 + #2 #1 + #3 & @@ {#3, #4, Which[Mod[#4, 3] == 0, Abs[#1], Mod[#4, 3] == 1, Abs[#2], True, Abs[#2] - Abs[#1]]} & @@ {#1, #2, If[UnsameQ @@ Sign[{#1, #2}], Abs[#1] + Abs[#2], Max[Abs[{#1, #2}]]], Which[And[#1 > 0, #2 <= 0], 0, And[#1 >= #2, #1 + #2 > 0], 1, And[#2 > #1, #1 >= 0], 2, And[#1 < 0, #2 >= 0], 3, And[#1 <= #2, #1 + #2 < 0], 4, And[#1 > #2, #1 + #2 <= 0], 5, True, 0]} & @@ {#2 - m - 1, m - #1 + 1} &, {#, #}] &[2 m + 1]; t = s /. k_ /; k > 3 n (n + 1) + 1 :> -k; Table[If[PrimeQ@ m, -1, Count[#, _?PrimeQ] &@ Union@ Map[t[[#1, #2]] & @@ # &, Join @@ Array[FirstPosition[t, m] + {##} - 2 & @@ {#1, #2 + Boole[#1 == #2 == 2] + Boole[#1 == 1]} &, {3, 2}]]], {m, 3 n (n - 1) + 1}]]
Comments