cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327896 a(n) is the minimum number of tiles needed for constructing a polyiamond with n holes.

Original entry on oeis.org

9, 14, 19, 23, 27, 31, 35, 39, 43, 47, 51, 54, 58, 62, 65, 69, 73, 76, 80, 83, 87, 90, 94, 97, 101, 104, 108, 111, 115, 118, 122, 125, 129, 132, 135, 139, 142, 146, 149, 152, 156, 159, 163, 166, 169, 173, 176, 179, 183, 186, 189, 193, 196, 199, 203, 206, 209, 213
Offset: 1

Views

Author

Stefano Spezia, Sep 29 2019

Keywords

Comments

For n > 0, it is easy to prove that k(n) = floor((3 + sqrt(3*(3+8*n)))/6) is the unique integer that satisfies the inequalities 3*binomial(k,2) <= n <= 3*binomial(k+1,2) of Theorem 1.1 in Malen and Roldán.
Proof: solving in k the above inequalities for n > 0, one gets that x - 1 <= k <= x, where x = (3 + sqrt(3*(3+8*n)))/6. Since 3*(3+8*n) is never a perfect square, it follows that x is not an integer and k = floor(x). QED.

Crossrefs

Programs

  • Maple
    k:=n->floor((3+sqrt(3*(3+8*n)))/6): a:=n->3*(n+k(n))+1+ceil(2*n/k(n)): seq(a(n), n = 1 .. 58)
  • Mathematica
    k[n_]:=Floor[(3+Sqrt[3*(3+8n)])/6]; a[n_]:=3(n+k[n])+1+Ceiling[2n/k[n]]; Array[a,58]

Formula

a(n) = 3*(n + k(n)) + 1 + ceiling(2*n/k(n)), where k(n) = floor((3 + sqrt(3*(3+8*n)))/6).