cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327903 Number of set-systems covering n vertices where every edge has a different sum.

Original entry on oeis.org

1, 1, 5, 77, 7369, 10561753, 839653402893, 15924566366443524837, 315320784127456186118309342769, 29238175285109256786706269143580213236526609, 59347643832090275881798554403880633753161146711444051797893301
Offset: 0

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A set-system is a set of nonempty sets. It is covering if there are no isolated (uncovered) vertices.

Examples

			The a(3) = 77 set-systems:
  123  1-23    1-2-3      1-2-3-13      1-2-3-13-23     1-2-3-13-23-123
       2-13    1-2-13     1-2-3-23      1-2-12-13-23    1-2-12-13-23-123
       1-123   1-2-23     1-2-12-13     1-2-3-13-123
       12-13   1-3-23     1-2-12-23     1-2-3-23-123
       12-23   2-3-13     1-2-13-23     1-2-12-13-123
       13-23   1-12-13    1-2-3-123     1-2-12-23-123
       2-123   1-12-23    1-3-13-23     1-2-13-23-123
       3-123   1-13-23    2-3-13-23     1-3-13-23-123
       12-123  1-2-123    1-12-13-23    2-3-13-23-123
       13-123  1-3-123    1-2-12-123    1-12-13-23-123
       23-123  2-12-13    1-2-13-123    2-12-13-23-123
               2-12-23    1-2-23-123
               2-13-23    1-3-13-123
               2-3-123    1-3-23-123
               3-13-23    2-12-13-23
               1-12-123   2-3-13-123
               1-13-123   2-3-23-123
               12-13-23   1-12-13-123
               1-23-123   1-12-23-123
               2-12-123   1-13-23-123
               2-13-123   2-12-13-123
               2-23-123   2-12-23-123
               3-13-123   2-13-23-123
               3-23-123   3-13-23-123
               12-13-123  12-13-23-123
               12-23-123
               13-23-123
		

Crossrefs

The antichain case is A326572.
The graphical case is A327904.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    qes[n_]:=Select[stableSets[Subsets[Range[n],{1,n}],Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[qes[n]],{n,0,4}]
  • PARI
    \\ by inclusion/exclusion on covered vertices.
    C(v)={my(u=Vecrev(-1 + prod(k=1, #v, 1 + x^v[k]))); prod(i=1, #u, 1 + u[i])}
    a(n)={my(s=0); forsubset(n, v, s += (-1)^(n-#v)*C(v)); s} \\ Andrew Howroyd, Oct 02 2019

Extensions

Terms a(4) and beyond from Andrew Howroyd, Oct 02 2019