A327903 Number of set-systems covering n vertices where every edge has a different sum.
1, 1, 5, 77, 7369, 10561753, 839653402893, 15924566366443524837, 315320784127456186118309342769, 29238175285109256786706269143580213236526609, 59347643832090275881798554403880633753161146711444051797893301
Offset: 0
Keywords
Examples
The a(3) = 77 set-systems: 123 1-23 1-2-3 1-2-3-13 1-2-3-13-23 1-2-3-13-23-123 2-13 1-2-13 1-2-3-23 1-2-12-13-23 1-2-12-13-23-123 1-123 1-2-23 1-2-12-13 1-2-3-13-123 12-13 1-3-23 1-2-12-23 1-2-3-23-123 12-23 2-3-13 1-2-13-23 1-2-12-13-123 13-23 1-12-13 1-2-3-123 1-2-12-23-123 2-123 1-12-23 1-3-13-23 1-2-13-23-123 3-123 1-13-23 2-3-13-23 1-3-13-23-123 12-123 1-2-123 1-12-13-23 2-3-13-23-123 13-123 1-3-123 1-2-12-123 1-12-13-23-123 23-123 2-12-13 1-2-13-123 2-12-13-23-123 2-12-23 1-2-23-123 2-13-23 1-3-13-123 2-3-123 1-3-23-123 3-13-23 2-12-13-23 1-12-123 2-3-13-123 1-13-123 2-3-23-123 12-13-23 1-12-13-123 1-23-123 1-12-23-123 2-12-123 1-13-23-123 2-13-123 2-12-13-123 2-23-123 2-12-23-123 3-13-123 2-13-23-123 3-23-123 3-13-23-123 12-13-123 12-13-23-123 12-23-123 13-23-123
Links
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; qes[n_]:=Select[stableSets[Subsets[Range[n],{1,n}],Total[#1]==Total[#2]&],Union@@#==Range[n]&]; Table[Length[qes[n]],{n,0,4}]
-
PARI
\\ by inclusion/exclusion on covered vertices. C(v)={my(u=Vecrev(-1 + prod(k=1, #v, 1 + x^v[k]))); prod(i=1, #u, 1 + u[i])} a(n)={my(s=0); forsubset(n, v, s += (-1)^(n-#v)*C(v)); s} \\ Andrew Howroyd, Oct 02 2019
Extensions
Terms a(4) and beyond from Andrew Howroyd, Oct 02 2019
Comments