A327905 FDH numbers of pairwise coprime sets.
2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 55, 56, 57, 58, 62, 63, 66, 68, 70, 74, 75, 76, 77, 80, 82, 84, 86, 88, 91, 93, 94, 95, 96, 98, 99, 100, 104, 106, 110, 112, 114, 116, 118, 122, 123, 125, 126, 132
Offset: 1
Keywords
Examples
The sequence of terms together with their corresponding coprime sets begins: 2: {1} 6: {1,2} 8: {1,3} 10: {1,4} 12: {2,3} 14: {1,5} 18: {1,6} 20: {3,4} 21: {2,5} 22: {1,7} 24: {1,2,3} 26: {1,8} 28: {3,5} 32: {1,9} 33: {2,7} 34: {1,10} 35: {4,5} 38: {1,11} 40: {1,3,4} 42: {1,2,5}
Links
- Wolfram Language Documentation, CoprimeQ
Crossrefs
Programs
-
Mathematica
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; nn=100;FDprimeList=Array[FDfactor,nn,1,Union]; FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList]; Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&]
Comments