A327922 Odd numbers m >= 3 for which phi(2*m)/2 = phi(m)/2 is even, where phi = A000010 (Euler's totient).
5, 13, 15, 17, 21, 25, 29, 33, 35, 37, 39, 41, 45, 51, 53, 55, 57, 61, 63, 65, 69, 73, 75, 77, 85, 87, 89, 91, 93, 95, 97, 99, 101, 105, 109, 111, 113, 115, 117, 119, 123, 125, 129, 133, 135, 137, 141, 143, 145, 147, 149, 153, 155, 157, 159, 161, 165, 169, 171, 173, 175, 177, 181, 183, 185, 187, 189, 193
Offset: 1
Examples
[n, a(n), [r1, r3], number of solutions x (mod a(n)), [solutions]] (with pm for + or -): [1, 5, [1, 0], 4, [pm1, pm2]], [5, 21 = 3*7, [0, 2], 4, [pm1, pm8]], [20, 65 = 5*13, [1, 1], 8, [pm1, pm8, pm14, pm18]], [34, 105 = 3*5*7, [1, 2], 8, [pm1, pm29, pm34, pm41]].
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 121-122.
- J. H. Silverman, A Friendly Introduction to Number Theory, fourth ed., Pearson Education, Inc, 2014, ch. 20, pp. 149-155.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[3, 200, 2], And[EvenQ[#1], #1 == #2] & @@ {EulerPhi[2 #]/2, EulerPhi[#]/2} &] (* Michael De Vlieger, Jun 28 2020 *)
-
PARI
isok(m) = (m > 3) && (m % 2) && ((eulerphi(m) % 4) == 0); \\ Michel Marcus, Nov 13 2019
Formula
All members of the set {odd m >= 1: 4 | phi(m)} ordered increasingly.
Comments