cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327928 Number of distinct primes p such that p^p divides the arithmetic derivative of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 01 2019

Keywords

Examples

			For n=20, A003415(20) = 24 = 2^3 * 3^1, thus only 2^2 divides 24, and a(24) = 1.
For n=81, A003415(81) = 108 = 2^2 * 3^3. Both 2^2 and 3^3 divide 108, thus a(81) = 2.
		

Crossrefs

Cf. A003415, A129251, A327929 (indices of nonzero terms), A327932.

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A129251(n) = { my(f = factor(n)); sum(k=1, #f~, (f[k, 2]>=f[k, 1])); };
    A327928(n) = if(n<=1,0,A129251(A003415(n)));

Formula

a(0) = a(1) = 0; for n > 1, a(n) = A129251(A003415(n)).