A327931 Lexicographically earliest infinite sequence such that for all i, j, a(i) = a(j) => A327930(i) = A327930(j).
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37, 65, 66, 67, 68, 69, 2, 70, 71, 72, 2, 73, 2, 74, 75
Offset: 1
Keywords
Examples
Divisors of 39 are [1, 3, 13, 39], while the divisors of 55 are [1, 5, 11, 55]. Taking their arithmetic derivatives (A003415) yields in both cases [0, 1, 1, 16], thus a(39) = a(55) (= 28, as allotted by restricted growth sequence transform).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 8192; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 v003415 = vector(up_to,n,A003415(n)); A327930(n) = { my(m=1); fordiv(n,d,if((d>1), m *= prime(v003415[d]))); (m); }; v327931 = rgs_transform(vector(up_to, n, A327930(n))); A327931(n) = v327931[n];
Formula
a(p) = 2 for all primes p.
Comments