A327932 a(n) = A327928(n) - A129251(n), where A327928(n) gives the number of distinct primes p such that p^p divides the arithmetic derivative of n, and A129251(n) gives the number of such primes for n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1
Keywords
Examples
For n = 15 = 3*5, A129251(15) = 0, but for A003415(15) = 8 = 2^3, A129251(8) = 1, thus a(15) = 1. For n = 515 = 5*103, A129251(515) = 0, but for A003415(515) = 108 = 2^2 * 3^3, A129251(108) = 2, thus a(515) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537