A327938 Multiplicative with a(p^e) = p^(e mod p).
1, 2, 3, 1, 5, 6, 7, 2, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 6, 25, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 9, 37, 38, 39, 10, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71, 18, 73, 74, 75, 19, 77, 78, 79, 5, 3, 82, 83, 21, 85, 86, 87, 22
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^Mod[e, p]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 07 2022 *)
-
PARI
A327938(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]%f[k,1])); factorback(f); };
Formula
Multiplicative with a(p^e) = p^(e mod p).
a(n) = n / A327939(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1/(1+1/p^p)) = 0.38559042841678887219... . - Amiram Eldar, Nov 07 2022
Comments