cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327964 a(1) = 1, and for n > 1, a(n) = A276085(A327963(n)).

Original entry on oeis.org

1, 0, 0, 4, 0, 6, 0, 8, 3, 30, 0, 12, 0, 4, 15, 16, 0, 32, 0, 20, 7, 2310, 0, 24, 7, 8, 27, 28, 0, 6469693230, 0, 32, 31, 510510, 35, 36, 0, 32, 39, 40, 0, 7420738134810, 0, 44, 2312, 12, 0, 48, 31, 10, 51, 52, 0, 54, 55, 56, 211, 6469693230, 0, 60, 0, 212, 30032, 64, 5, 1922760350154212639070, 0, 68, 2311, 32589158477190044730, 0, 72, 0, 2312, 216, 76, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 07 2019

Keywords

Crossrefs

Cf. A327929 (a subsequence of fixed points).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A129251(n) = { my(f = factor(n)); sum(k=1, #f~, (f[k, 2]>=f[k, 1])); };
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A327963(n) = if(1==n,0,my(u=A003415(n)); if(!A129251(u),u,A276086(n)));
    A002110(n) = prod(i=1,n,prime(i));
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    A327964(n) = if(1==n,n,A276085(A327963(n)));

Formula

a(1) = 1, and for n > 1, a(n) = A276085(A327963(n)).
a(p) = 0 for all primes p.
a(A327929(n)) = A327929(n) for all n. [But note that there are also other fixed points.]