A327966 Number of iterations of "tamed variant of arithmetic derivative", A327965 needed to reach 0 from n, or -1 if zero is never reached.
0, 1, 2, 2, 2, 2, 3, 2, 3, 4, 3, 2, 2, 2, 5, 3, 3, 2, 5, 2, 4, 4, 3, 2, 3, 4, 4, 2, 3, 2, 3, 2, 3, 6, 3, 3, 4, 2, 5, 2, 3, 2, 3, 2, 3, 3, 5, 2, 3, 6, 4, 3, 6, 2, 3, 2, 3, 4, 3, 2, 3, 2, 7, 4, 3, 6, 3, 2, 6, 5, 3, 2, 3, 2, 3, 3, 3, 6, 3, 2, 3, 2, 3, 2, 3, 4, 4, 3, 4, 2, 4, 3, 4, 4, 7, 4, 3, 2, 7, 4, 4, 2, 4, 2, 3, 3, 3, 2, 3, 2, 4, 4, 4, 2, 3, 3, 4, 4, 3, 4, 3
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..90609
Programs
-
PARI
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 A327938(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]%f[k,1])); factorback(f); }; A327965(n) = if(n<=1,0,A327938(A003415(n))); A327966(n) = { my(k=0); while(n>0, k++; n = A327965(n)); (k); }; \\ Or alternatively, as a recurrence: A327966(n) = if(!n,0,1+A327966(A327965(n)));
Formula
a(0) = 0; for n > 0, a(n) = 1 + a(A327965(n)).
a(p) = 2 for all primes p.
Comments