cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327981 Distances between successive ones in A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 4, 2, 1, 3, 3, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 2, 1, 5, 1, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 4, 2, 2, 1, 1, 6, 3, 2, 1, 4, 1, 1, 4, 1, 2, 1, 2, 1, 2, 8, 4, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 6, 1, 3, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2019

Keywords

Comments

First differences of A327984, which gives indices of ones in A051023.

Examples

			The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell:
   0:              (1)
   1:             1(1)1
   2:            11(0)01
   3:           110(1)111
   4:          1100(1)0001
   5:         11011(1)10111
   6:        110010(0)001001
   7:       1101111(0)0111111
   8:      11001000(1)11000001
   9:     110111101(1)001000111
  10:    1100100001(0)1111011001
  11:   11011110011(0)10000101111
  12:  110010001110(0)110011010001
  13: 1101111011001(1)1011100110111
The distances between successive 1's in its central column (indicated here with parentheses) are 1-0 (as the first 1 is on row 0, and the second is on row 1), 3-1, 4-3, 5-4, 8-5, 9-8, 13-9, ..., that is, the first terms of this sequence: 1, 2, 1, 1, 3, 1, 4, ...
		

Crossrefs

Programs

  • Mathematica
    A327981list[upto_]:=Differences[Flatten[Position[CellularAutomaton[30,{{1},0},{upto,{{0}}}],1]]];A327981list[300] (* Paolo Xausa, Jun 27 2023 *)
  • PARI
    up_to = 105;
    A269160(n) = bitxor(n, bitor(2*n, 4*n));
    A327981list(up_to) = { my(v=vector(up_to), s=1, n=0, on=n, k=0); while(kA269160(s); if((s>>n)%2, k++; v[k] = (n-on); on=n)); (v); }
    v327981 = A327981list(up_to);
    A327981(n) = v327981[n];

Formula

a(n) = A327984(1+n) - A327984(n).