A327981 Distances between successive ones in A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.
1, 2, 1, 1, 3, 1, 4, 2, 1, 3, 3, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 2, 1, 5, 1, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 4, 2, 2, 1, 1, 6, 3, 2, 1, 4, 1, 1, 4, 1, 2, 1, 2, 1, 2, 8, 4, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 6, 1, 3, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 2, 1, 1
Offset: 1
Keywords
Examples
The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell: 0: (1) 1: 1(1)1 2: 11(0)01 3: 110(1)111 4: 1100(1)0001 5: 11011(1)10111 6: 110010(0)001001 7: 1101111(0)0111111 8: 11001000(1)11000001 9: 110111101(1)001000111 10: 1100100001(0)1111011001 11: 11011110011(0)10000101111 12: 110010001110(0)110011010001 13: 1101111011001(1)1011100110111 The distances between successive 1's in its central column (indicated here with parentheses) are 1-0 (as the first 1 is on row 0, and the second is on row 1), 3-1, 4-3, 5-4, 8-5, 9-8, 13-9, ..., that is, the first terms of this sequence: 1, 2, 1, 1, 3, 1, 4, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Programs
-
Mathematica
A327981list[upto_]:=Differences[Flatten[Position[CellularAutomaton[30,{{1},0},{upto,{{0}}}],1]]];A327981list[300] (* Paolo Xausa, Jun 27 2023 *)
-
PARI
up_to = 105; A269160(n) = bitxor(n, bitor(2*n, 4*n)); A327981list(up_to) = { my(v=vector(up_to), s=1, n=0, on=n, k=0); while(k
A269160(s); if((s>>n)%2, k++; v[k] = (n-on); on=n)); (v); } v327981 = A327981list(up_to); A327981(n) = v327981[n];
Comments