A327983 Run lengths in A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.
2, 1, 3, 2, 2, 3, 1, 1, 2, 2, 1, 2, 3, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 4, 4, 3, 1, 1, 1, 1, 3, 5, 1, 2, 1, 1, 2, 3, 3, 3, 2, 1, 2, 1, 2, 1, 1, 7, 1, 3, 5, 1, 3, 1, 1, 2, 3, 3, 3, 1, 1, 1, 3, 5, 2, 2, 1, 3, 2, 2, 4, 2, 6, 6, 7, 1, 2, 2, 1, 1, 2, 1, 3, 5, 1, 1, 2, 3, 2
Offset: 1
Keywords
Examples
The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell: 0: (1) 1: 1(1)1 2: 11(0)01 3: 110(1)111 4: 1100(1)0001 5: 11011(1)10111 6: 110010(0)001001 7: 1101111(0)0111111 8: 11001000(1)11000001 9: 110111101(1)001000111 10: 1100100001(0)1111011001 11: 11011110011(0)10000101111 12: 110010001110(0)110011010001 13: 1101111011001(1)1011100110111 When noting up the lengths of consecutive identical values ("runs") in its central column (indicated here with parentheses), we see that there are two ones at first, followed by one zero, followed by three ones, then two zeros, etc, and so we obtain the terms on this sequence: 2, 1, 3, 2, 2, 3, ...
Links
Programs
-
Mathematica
Length /@ Split@ CellularAutomaton[30, {{1}, 0}, {105, {{0}}}] (* Michael De Vlieger, Oct 04 2019 *)
-
PARI
up_to = 105; A269160(n) = bitxor(n, bitor(2*n, 4*n)); A327983list(up_to) = { my(v=vector(up_to), s=1, oc=s, nc, n=0, on=n, k=0); while(k
A269160(s); nc = (s>>n)%2; if(nc!=oc, oc=nc; k++; v[k] = (n-on); on=n)); (v); } v327983 = A327983list(up_to); A327983(n) = v327983[n];