A327990 The Fibonacci Codes. Irregular triangle T(n, k) with n >= 0 and 0 <= k < A000045(n+1).
0, 1, 3, 1, 7, 3, 1, 9, 15, 7, 3, 1, 19, 17, 31, 9, 15, 7, 3, 1, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1, 43, 41, 79, 37, 71, 67, 65, 127, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1
Offset: 0
Examples
The Fibonacci codes start: [0] [[]] [1] [[0]] [2] [[00][0]] [3] [[000][00][0]] [4] [[010][0000][000][00][0]] [5] [[0010][0100][00000][010][0000][000][00][0]] [6] [[0110][00010][00100][01000][000000][0010][0100][00000][010][0000][000][00][0]] [7] [[00110][01010][000010][01100][000100][001000][010000][0000000][0110][00010][00100][01000][000000][0010][0100][00000][010][0000][000][00][0]] The encoding of the Fibonacci codes start: [0] [0] [1] [1] [2] [3, 1] [3] [7, 3, 1] [4] [9, 15, 7, 3, 1] [5] [19, 17, 31, 9, 15, 7, 3, 1] [6] [21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1] [7] [43, 41, 79, 37, 71, 67, 65, 127, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1]
Programs
-
SageMath
@cached_function def FibonacciCodes(n): if n == 0 : return [[]] if n == 1 : return [[0]] A = [c.conjugate() for c in Compositions(n) if not(1 in c)] B = [[i-1 for i in a] for a in A] return B + FibonacciCodes(n-1) def A327990row(n): FC = FibonacciCodes(n) B = lambda C: sum((c+1)*2^i for (i, c) in enumerate(C)) return [B(c) for c in FC] for n in (0..6): print(A327990row(n))
Comments