A327992 The binary Fibonacci compositions. Irregular triangle with n >= 0 where the length of row n is Fibonacci(n) for n > 0.
1, 11, 111, 101, 1111, 1101, 1011, 11111, 1001, 11101, 11011, 10111, 111111, 11001, 10101, 10011, 111101, 111011, 110111, 101111, 1111111, 10001, 111001, 110101, 101101, 110011, 101011, 100111, 1111101, 1111011, 1110111, 1101111, 1011111, 11111111
Offset: 0
Examples
The triangle starts: [0] [ 1] [1] [ 11] [2] [ 111] [3] [ 101, 1111] [4] [ 1101, 1011, 11111] [5] [ 1001, 11101, 11011, 10111, 111111] [6] [11001, 10101, 10011, 111101, 111011, 110111, 101111, 1111111] [7] [10001, 111001, 110101, 101101, 110011, 101011, 100111, 1111101, 1111011, 1110111, 1101111, 1011111, 11111111] . For instance, to compute T(7, 2) start with the composition [2, 3, 3]. Then take the conjugate, normalize the parts with 2 - c[j] and then represent the digits as an integer. The steps are: [2, 3, 3] -> [1, 1, 2, 1, 2, 1] -> [1, 1, 0, 1, 0, 1] -> 110101 = T(7, 2).
References
- A. Cayley, Theorems in Trigonometry and on Partitions, Messenger of Mathematics, 5 (1876), pp. 164, 188. Also in Mathematical Papers Vol. 10, n. 634, p. 16.
Links
- Peter Luschny, Table of n, a(n) for row 0..19
Programs
-
SageMath
import functools def alpha(P, Q): # order of compositions if len(P) < len(Q): return int(-1) if len(P) == len(Q): for i in range(len(P)): if P[i] < Q[i]: return int(-1) if P[i] > Q[i]: return int(1) return int(0) return int(0) def compositions(n): A = [c.conjugate() for c in Compositions(n+1) if not(1 in c)] B = [[2-i for i in a] for a in A] sorted(B, key = functools.cmp_to_key(alpha)) return B def Int(c): # convert to decimal integer representation s = "" for t in c: s += str(t) return Integer(s) if s else 1 def A327992row(n): if n == 0: return [1] return [Int(c) for c in compositions(n)] for n in (0..8): print(A327992row(n))
Formula
The number of zeros in all binary Fibonacci compositions of n equal the number of elements in all subsets of {1, 2, ..., n} with no consecutive integers. (For example, the number of zeros in row 7 (see the triangle below) is 20 = A001629(6).)
Comments