cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328002 a(n) = 2^n * Sum_{k=0..n} Product_{j=1..k} (2/j)^((-1)^j).

Original entry on oeis.org

1, 3, 8, 22, 50, 130, 280, 700, 1470, 3570, 7392, 17556, 36036, 84084, 171600, 394680, 802230, 1823250, 3695120, 8314020, 16812796, 37505468, 75716368, 167657672, 338019500, 743642900, 1497686400, 3276189000, 6592494600, 14348370600, 28851858720, 62512360560
Offset: 0

Views

Author

Peter Luschny, Oct 02 2019

Keywords

Crossrefs

Cf. A056040, row sums of A338654.

Programs

  • Maple
    s := z -> 2^z*(GAMMA(z/2+1/2)/GAMMA(z/2+1))^cos(z*Pi):
    a := n -> sqrt(2/Pi)*add(s(k)*s(n-k-1/2), k=0..n): seq(a(n), n=0..19);
    # Alternative:
    a := proc(n) option remember; if n=0 then 1 elif n=1 then 3 else
    (4*n*(n*(n+5)-10)*a(n-2) + 2*(n-6)*(n+2)*a(n-1))/(n*(n*(n+3)-14)) fi end:
    seq(a(n), n=0..31); # Peter Luschny, Jan 10 2020

Formula

a(n) = sqrt(2/Pi)*Sum_{k=0..n} s(k)*s(n-k-1/2) where s(n) = 2^n*(Gamma(n/2 + 1/2)/Gamma(n/2 + 1))^cos(n*Pi).
a(n) = [x^n] (4*x^2 - x - 1)/((1 - 4*x^2)^(3/2)*(2*x - 1)).
a(n) ~ 2^n * n^(3/2) / (3*sqrt(2*Pi)). - Vaclav Kotesovec, Oct 19 2019
D-finite with recurrence: n*a(n) +(n-4)*a(n-1) +2*(-4*n+3)*a(n-2) +4*(-n+2)*a(n-3) +16*(n-2)*a(n-4)=0. - R. J. Mathar, Jan 09 2020
D-finite with recurrence: a(n) = (4*n*(n*(n + 5) - 10)*a(n-2) + 2*(n - 6)*(n + 2)*a(n-1))/(n*(n*(n + 3) - 14)). - Peter Luschny, Jan 10 2020
Let q(n) = a(n+1)/a(n) and d(n) = numerator(q(n)) - 2*denominator(q(n)).
Conjecture: d(n) is periodic with period 12 and repetition pattern (1, 2, 3, 3, 3, 2, 1, 1, 3, 6, 3, 1). - Peter Luschny, Jan 10 2020
a(n) = Sum_{k=0..n} 2^(n-k)*A056040(k). - Peter Luschny, Apr 22 2021

Extensions

Simpler name by Peter Luschny, Apr 22 2021