A338654 T(n, k) = 2^n * Product_{j=1..k} (j/2)^((-1)^(j - 1)). Triangle read by rows, for 0 <= k <= n.
1, 2, 1, 4, 2, 2, 8, 4, 4, 6, 16, 8, 8, 12, 6, 32, 16, 16, 24, 12, 30, 64, 32, 32, 48, 24, 60, 20, 128, 64, 64, 96, 48, 120, 40, 140, 256, 128, 128, 192, 96, 240, 80, 280, 70, 512, 256, 256, 384, 192, 480, 160, 560, 140, 630, 1024, 512, 512, 768, 384, 960, 320, 1120, 280, 1260, 252
Offset: 0
Examples
Triangle start: [0] 1 [1] 2, 1 [2] 4, 2, 2 [3] 8, 4, 4, 6 [4] 16, 8, 8, 12, 6 [5] 32, 16, 16, 24, 12, 30 [6] 64, 32, 32, 48, 24, 60, 20 [7] 128, 64, 64, 96, 48, 120, 40, 140 [8] 256, 128, 128, 192, 96, 240, 80, 280, 70 [9] 512, 256, 256, 384, 192, 480, 160, 560, 140, 630
Links
- Felix Fröhlich, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
T := (n, k) -> 2^n*mul((j/2)^((-1)^(j - 1)), j = 1 .. k): seq(seq(T(n, k), k=0..n), n=0..9); # Recurrence: Trow := proc(n) if n = 0 then return [1] fi; Trow(n - 1); n^irem(n, 2) * (4/n)^irem(n + 1, 2) * %[n]; [op(2 * %%), %] end: seq(print(Trow(n)), n = 0..9);
-
PARI
t(n, k) = 2^n * prod(j=1, k, ((j/2)^((-1)^(j - 1)))) trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print("")) /* Print upper 10 rows of the triangle as follows: */ trianglerows(10) \\ Felix Fröhlich, Apr 22 2021