A328010 The 5x + 1 sequence beginning at 17.
17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17, 86, 43, 216, 108, 54, 27, 136, 68, 34, 17
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Alex V. Kontorovich & Jeffrey C. Lagarias, Stochastic Models for the 3x+1 and 5x+1 Problems arXiv:0910.1944 [math.NT], 2009.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).
Programs
-
PARI
Vec((17 + 86*x + 43*x^2 + 216*x^3 + 108*x^4 + 54*x^5 + 27*x^6 + 136*x^7 + 68*x^8 + 34*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Oct 05 2019
Formula
a(n+1) = 5*a(n) + 1 if a(n) is odd, a(n+1) = a(n)/2 otherwise.
From Colin Barker, Oct 04 2019: (Start)
G.f.: (17 + 86*x + 43*x^2 + 216*x^3 + 108*x^4 + 54*x^5 + 27*x^6 + 136*x^7 + 68*x^8 + 34*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-10) for n>9.
(End)
Comments