A328011 The 5x + 1 sequence beginning at 1.
1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1, 6, 3, 16, 8, 4, 2, 1
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Alex V. Kontorovich & Jeffrey C. Lagarias, Stochastic Models for the 3x+1 and 5x+1 Problems, arXiv:0910.1944 [math.NT], 2009.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
Programs
-
PARI
Vec((1 + 6*x + 3*x^2 + 16*x^3 + 8*x^4 + 4*x^5 + 2*x^6) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^80)) \\ Colin Barker, Oct 08 2019
Formula
a(n+1) = 5*a(n) + 1 if a(n) is odd, a(n+1) = a(n)/2 otherwise.
From Colin Barker, Oct 08 2019: (Start)
G.f.: (1 + 6*x + 3*x^2 + 16*x^3 + 8*x^4 + 4*x^5 + 2*x^6) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-7) for n>6.
(End)
Comments