cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328024 Heinz numbers of multisets representing the differences between some positive integer's consecutive divisors.

Original entry on oeis.org

1, 2, 3, 6, 7, 13, 20, 29, 37, 39, 42, 53, 61, 79, 107, 110, 113, 151, 173, 181, 199, 239, 261, 271, 281, 312, 317, 349, 359, 374, 397, 421, 457, 497, 503, 541, 557, 577, 593, 613, 701, 733, 769, 787, 798, 857, 863, 903, 911, 953, 983, 1021, 1061, 1069, 1151
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2019

Keywords

Comments

The Heinz number of an integer partition or multiset {y_1,...,y_k} is prime(y_1)*...*prime(y_k).
There is exactly one entry with any given sum of prime indices A056239.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     3: {2}
     6: {1,2}
     7: {4}
    13: {6}
    20: {1,1,3}
    29: {10}
    37: {12}
    39: {2,6}
    42: {1,2,4}
    53: {16}
    61: {18}
    79: {22}
   107: {28}
   110: {1,3,5}
   113: {30}
   151: {36}
   173: {40}
   181: {42}
   199: {46}
   239: {52}
   261: {2,2,10}
   271: {58}
   281: {60}
   312: {1,1,1,2,6}
For example, the divisors of 8 are {1,2,4,8}, with differences {1,2,4}, with Heinz number 42, so 42 belongs to the sequence.
		

Crossrefs

A permutation of A328023.
Also the set of possible Heinz numbers of rows of A193829, A328025, or A328027.

Programs

  • Mathematica
    nn=1000;
    Select[Union[Table[Times@@Prime/@Differences[Divisors[n]],{n,nn}]],#<=nn&]