A328031 Upper bound for the determinant of an n X n matrix whose entries are a permutation of the multiset {1^n,...,n^n}.
1, 1, 3, 18, 172, 2343, 42439, 976050, 27583338, 934173632, 37180409223, 1711870023666, 90007747560742, 5346164992890599, 355442084718552178, 26244000000000000000, 2137205155719002036203, 190811368062993357765186, 18577775646585813239195436, 1963166636163973976912956096
Offset: 0
Links
- Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 2018.
Programs
-
PARI
for(n=1,20,print1(floor(n^n*((n+1)/2)*((n+1)/12)^((n-1)/2)),", "))
Formula
a(n) = floor(n^n*((n+1)/2)*((n+1)/12)^((n-1)/2)) (Corollary 3 in M. Sigg's article).