cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328032 If there are m primes between 10^(n-1) and 10^n, a(n) is the middle prime if m is odd, otherwise the larger of the two middle primes.

Original entry on oeis.org

5, 47, 509, 5273, 53047, 532907, 5356259, 53765519, 539119753, 5402600081, 54118210441, 541947386821, 5425907665571, 54313871643797, 543611236251491, 5440228524355381, 54438462600610513, 544705097744731559, 5449909581264135103
Offset: 1

Views

Author

Robert G. Wilson v, Oct 02 2019

Keywords

Comments

This sequence, unlike A309329, only contains primes.
For n > 2, a(n) > 10*a(n-1) for the terms shown. Does this continue?
The prime index of a(n): 3, 15, 97, 699, 5411, 44046, 371539, 3213018, 28304495, 252950023, 2286553663, 20862983416, 191836724429, 1775503643821, 16524756086736, 154541455728298, 1451397749344080, 13681755722697547, 129398810782042734, 1227438634918631724, 11674044544289825385, 111297278087667319110, 1063393839148059937607, 10180460079478002418395, 97640954583246485139774, 938046530135790455369642, 9025853588857058793877502, ..., .

Examples

			a(1) is 5 since, among the single-digit primes, i.e., {2, 3, 5, 7}, the two middle primes are {3, 5}, of which the larger one is 5;
a(2) is 47 since it is the middle prime of the two-digit primes, i.e., {11, 13, 17, ..., 47, ..., 83, 89, 97};
a(3) is 509 since it is the middle prime of the three-digit primes, i.e., {101, 103, 107, ..., 509, ..., 983, 991, 997}.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = PrimePi[ 10^(n -1)], q = PrimePi[ 10^n]}, Prime[ Ceiling[(q +p +1)/2]]]; Array[f, 13]

Formula

a(n) is the next prime after A309329(n) - 1.