A328041 Number of parts in all proper floor(n/2)-times partitions of n.
0, 1, 2, 5, 21, 61, 461, 1652, 17487, 76264, 1002835, 5207742, 88664398, 515821495, 10184805624, 69200406679, 1610282904928, 12024183111167, 318978837371853, 2653055962437988, 79332250069994262, 725413309833320933, 23919660963588169669, 238830233430136549070
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Crossrefs
Cf. A327631.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+ (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]* b(n-i, min(n-i, i), k)))(b(i$2, k-1)))) end: a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i) *binomial(k, i), i=0..k))(iquo(n,2)): seq(a(n), n=0..23);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[k==0, {1, 1}, If[i<2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]]; a[n_] := With[{k = Quotient[n, 2]}, Sum[b[n, n, i][[2]] (-1)^(k - i)* Binomial[k, i], {i, 0, k}]]; a /@ Range[0, 23] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
Formula
a(n) = A327631(n,floor(n/2)).