cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328041 Number of parts in all proper floor(n/2)-times partitions of n.

Original entry on oeis.org

0, 1, 2, 5, 21, 61, 461, 1652, 17487, 76264, 1002835, 5207742, 88664398, 515821495, 10184805624, 69200406679, 1610282904928, 12024183111167, 318978837371853, 2653055962437988, 79332250069994262, 725413309833320933, 23919660963588169669, 238830233430136549070
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2019

Keywords

Crossrefs

Cf. A327631.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
             (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
        end:
    a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)
            *binomial(k, i), i=0..k))(iquo(n,2)):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[k==0, {1, 1}, If[i<2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
    a[n_] := With[{k = Quotient[n, 2]}, Sum[b[n, n, i][[2]] (-1)^(k - i)* Binomial[k, i], {i, 0, k}]];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)

Formula

a(n) = A327631(n,floor(n/2)).