cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328088 a(n) = Sum_{k=4..n} ( binomial(n,k)*(k-2)*(2^k-2*k-2) ) - (2^n-n-1).

Original entry on oeis.org

1, 94, 683, 3520, 15461, 61826, 232543, 838276, 2930585, 10014406, 33633299, 111448904, 365403853, 1187875594, 3834883271, 12309375244, 39320806145, 125090127950, 396537120379, 1253145232336, 3949433330741, 12416933938834, 38953666980143, 121962851990420, 381179210953321, 1189376848680406, 3705576521235683
Offset: 4

Views

Author

N. J. A. Sloane, Oct 17 2019

Keywords

Crossrefs

For the constant term see A000460.

Programs

  • Maple
    f:= n -> 3^(n-1)*(2*n-6) + 2^(n-1)*(-n^2+n+6) - n - 1:
    map(f, [$4..40]); # Robert Israel, Oct 18 2019
  • PARI
    Vec(x^4*(1 + 80*x - 551*x^2 + 1406*x^3 - 1772*x^4 + 1128*x^5 - 288*x^6) / ((1 - x)^2*(1 - 2*x)^3*(1 - 3*x)^2) + O(x^40)) \\ Colin Barker, Oct 19 2019

Formula

a(n) = 3^(n-1)*(2*n-6) + 2^(n-1)*(-n^2+n+6) - n - 1. - Robert Israel, Oct 18 2019
From Colin Barker, Oct 19 2019: (Start)
G.f.: x^4*(1 + 80*x - 551*x^2 + 1406*x^3 - 1772*x^4 + 1128*x^5 - 288*x^6) / ((1 - x)^2*(1 - 2*x)^3*(1 - 3*x)^2).
a(n) = -1 + 3*2^n - 2*3^n + (1/6)*(-6 + 3*2^n + 4*3^n)*n - 2^(-1+n)*n^2 for n>3.
a(n) = 14*a(n-1) - 82*a(n-2) + 260*a(n-3) - 481*a(n-4) + 518*a(n-5) - 300*a(n-6) + 72*a(n-7) for n>10.
(End)
E.g.f.: x^2/2 + 2*x^3/3 + exp(2*x)*(3 - 2*x^2 + (-3 + x)*cosh(x) + (-1 + 3*x)*sinh(x)). - Stefano Spezia, Oct 19 2019