cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A028659 Expansion of (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z))^3.

Original entry on oeis.org

1, 6, 12, 8, 6, 24, 36, 48, 72, 78, 120, 120, 116, 264, 240, 240, 342, 288, 496, 360, 504, 480, 600, 390, 748, 678, 804, 548, 1008, 552, 1200, 840, 1344, 1200, 1440, 1056, 1978, 1368, 1800, 1764, 2040, 1800, 2400, 1848, 2520, 2184, 2364, 1656, 3176, 2406, 2940
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = polcoeff((1 + 2*x*Ser(qfrep([2, 1; 1, 12], n, 1)))^3, n); \\ Jinyuan Wang, Feb 19 2020

Extensions

More terms from Jinyuan Wang, Feb 19 2020

A328093 Expansion of (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z))^5.

Original entry on oeis.org

1, 10, 40, 80, 90, 112, 260, 480, 700, 1050, 1520, 2160, 2980, 3920, 5920, 8160, 9530, 12800, 16620, 20560, 26672, 30720, 38960, 47690, 52020, 66250, 77380, 87940, 101600, 112720, 134304, 147920, 171020, 185760, 220160, 230400, 263550, 292080, 341200, 346820, 423984, 425680, 516480, 527600, 619120
Offset: 0

Views

Author

N. J. A. Sloane, Oct 17 2019

Keywords

References

  • Köklüce, Bülent. "Cusp forms in S_6 (Gamma_ 0(23)), S_8 (Gamma_0 (23)) and the number of representations of numbers by some quadratic forms in 12 and 16 variables." The Ramanujan Journal 34.2 (2014): 187-208. See F_k, p. 188.

Crossrefs

Programs

  • PARI
    a(n) = polcoeff((1 + 2*x*Ser(qfrep([2, 1; 1, 12], n, 1)))^5, n); \\ Jinyuan Wang, Feb 19 2020
Showing 1-2 of 2 results.