cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328137 Primes p such that p+1 is the product of two distinct primes and p+2 is the product of three distinct primes.

Original entry on oeis.org

193, 397, 613, 661, 757, 1093, 1237, 1453, 1657, 2137, 2341, 2593, 2917, 3217, 4177, 4621, 5233, 6121, 6133, 7057, 7537, 8101, 8317, 8353, 8677, 8893, 9013, 9721, 10957, 11677, 11701, 12421, 12433, 12541, 12853, 13933, 15277, 15733, 16033, 16381, 16417, 16633, 17257, 17293, 18013, 18253, 18481
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 04 2019

Keywords

Comments

All terms == 1 (mod 12).
Members k of A112998 such that k+2 is squarefree.

Examples

			a(3)=613 is in the sequence because 613 is prime, 614=2*307 is the product of two distinct primes, and 615=3*5*41 is the product of three distinct primes.
		

Crossrefs

Contained in A005383, A100363 and A112998.

Programs

  • Magma
    [p:p in PrimesUpTo(20000)| IsPrime((p+1) div 2) and IsSquarefree(p+2) and #PrimeDivisors(p+2) eq 3]; // Marius A. Burtea, Oct 04 2019
  • Maple
    select(t -> isprime(t) and isprime((t+1)/2) and numtheory:-issqrfree(t+2) and numtheory:-bigomega(t+2)=3, [seq(i,i=1..10^5,12)]);