A328137 Primes p such that p+1 is the product of two distinct primes and p+2 is the product of three distinct primes.
193, 397, 613, 661, 757, 1093, 1237, 1453, 1657, 2137, 2341, 2593, 2917, 3217, 4177, 4621, 5233, 6121, 6133, 7057, 7537, 8101, 8317, 8353, 8677, 8893, 9013, 9721, 10957, 11677, 11701, 12421, 12433, 12541, 12853, 13933, 15277, 15733, 16033, 16381, 16417, 16633, 17257, 17293, 18013, 18253, 18481
Offset: 1
Keywords
Examples
a(3)=613 is in the sequence because 613 is prime, 614=2*307 is the product of two distinct primes, and 615=3*5*41 is the product of three distinct primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p:p in PrimesUpTo(20000)| IsPrime((p+1) div 2) and IsSquarefree(p+2) and #PrimeDivisors(p+2) eq 3]; // Marius A. Burtea, Oct 04 2019
-
Maple
select(t -> isprime(t) and isprime((t+1)/2) and numtheory:-issqrfree(t+2) and numtheory:-bigomega(t+2)=3, [seq(i,i=1..10^5,12)]);
Comments