cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327869 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into distinct parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 4, 3, 3, 1, 5, 4, 0, 4, 1, 16, 5, 10, 10, 5, 1, 82, 66, 75, 60, 15, 6, 1, 169, 112, 126, 35, 140, 21, 7, 1, 541, 456, 196, 336, 280, 224, 28, 8, 1, 2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1, 17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2019

Keywords

Comments

Here we assume that every list of parts has at least one 0 because its addition does not change the value of the multinomial.
Number T(n,k) of set partitions of [n] with distinct block sizes and one of the block sizes is k. T(5,3) = 10: 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234.

Examples

			Triangle T(n,k) begins:
      1;
      1,     1;
      1,     0,     1;
      4,     3,     3,     1;
      5,     4,     0,     4,     1;
     16,     5,    10,    10,     5,    1;
     82,    66,    75,    60,    15,    6,    1;
    169,   112,   126,    35,   140,   21,    7,   1;
    541,   456,   196,   336,   280,  224,   28,   8,  1;
   2272,   765,  1548,  1848,  1386,  630,  336,  36,  9,  1;
  17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1;
  ...
		

Crossrefs

Columns k=0-3 give: A007837, A327876, A327881, A328155.
Row sums give A327870.
T(2n,n) gives A328156.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0),
                 l=select(x-> nops(x)=nops({x[]}) and
                 (k=0 or k in x), partition(n))):
    seq(seq(T(n, k), k=0..n), n=0..11);
    # second Maple program:
    b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))):
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n==0, 1, If[i<2, 0, b[n, i-1, If[i==k, 0, k]]] + If[i==k, 0, b[n-i, Min[n-i, i-1], k]/i!]]];
    T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2020, from 2nd Maple program *)

A276961 Number of set partitions of [2n] with largest set of size n.

Original entry on oeis.org

1, 1, 9, 90, 1015, 12978, 187110, 3008148, 53275365, 1028142830, 21426984722, 478684639524, 11394222257054, 287518726261900, 7658231720886900, 214521099685649640, 6299407928673657135, 193373975592937777770, 6189939300880260745050, 206159811915115686404700
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Comments

The blocks are ordered with increasing least elements.
a(0) = 1 by convention.

Examples

			a(1) = 1: 1|2.
a(2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n-1, i-1), i=1..min(n, k)))
        end:
    a:= n-> `if`(n=0, 1, b(2*n, n)-b(2*n, n-1)):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k]*Binomial[n - 1, i - 1], {i, 1, Min[n, k]}]];
    a[n_] := If[n == 0, 1, b[2*n, n] - b[2*n, n - 1]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 20 2018, translated from Maple *)

Formula

a(n) = A080510(2n,n).
a(n) = A327884(2n,n).
a(n) = ceiling(C(2n,n)*(A000110(n)-1/2)). - Ludovic Schwob, Jan 15 2022

A266518 Number of ordered partitions of a 2n-set with nondecreasing block sizes and maximal block size equal to n.

Original entry on oeis.org

1, 2, 18, 200, 3290, 61992, 1480248, 39402792, 1229123610, 42349478600, 1640551617848, 69364811821032, 3222214209737432, 161656803984848200, 8772238289222220600, 509677254444910662000, 31677425399312755814970, 2092539622373193784503240
Offset: 0

Views

Author

Alois P. Heinz, Dec 30 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    a:= n-> `if`(n=0, 1, b(2*n, n)-b(2*n, n-1)):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Binomial[n, i]*b[n-i, i]]]]; a[n_] := If[n==0, 1, b[2n, n] - b[2n, n-1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = (2n)! * [x^n] Product_{i=1..n} (i-1)!/(i!-x^i).
a(n) = A262071(2n,n).
a(n) ~ c * 2^(2*n+1/2) * n^n / exp(n), where c = A247551 = 2.529477472079152648... . - Vaclav Kotesovec, Jan 02 2016
a(n) = A327801(2n,n). - Alois P. Heinz, Sep 26 2019
Showing 1-3 of 3 results.