A328157 Number of n-uniform hypergraphs on 2n unlabeled nodes with at least one (possibly empty) hyperedge.
1, 2, 10, 2135, 29281354514767167, 1994324729203114587259985605157804740271034553359179870979936357974015
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..7
- Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989.
- Wikipedia, Hypergraph
Crossrefs
Cf. A309876.
Programs
-
Maple
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x-> [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]): h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i] /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq( `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)): b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n])) /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)): a:= n-> b(2*n$2, [], n)-1: seq(a(n), n=0..5);
Formula
a(n) = A309876(2n,n).
Comments