cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328157 Number of n-uniform hypergraphs on 2n unlabeled nodes with at least one (possibly empty) hyperedge.

Original entry on oeis.org

1, 2, 10, 2135, 29281354514767167, 1994324729203114587259985605157804740271034553359179870979936357974015
Offset: 0

Views

Author

Alois P. Heinz, Oct 05 2019

Keywords

Comments

A hypergraph is called k-uniform if all hyperedges have the same cardinality k.

Crossrefs

Cf. A309876.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    a:= n-> b(2*n$2, [], n)-1:
    seq(a(n), n=0..5);

Formula

a(n) = A309876(2n,n).