A328162 Maximum length of a divisibility chain of consecutive divisors of n.
1, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2
Offset: 1
Keywords
Examples
The divisors of 968 split into consecutive divisibility chains {{1, 2, 4, 8}, {11, 22, 44, 88}, {121, 242, 484, 968}}, so a(968) = 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local F,L,d,i; F:= sort(convert(numtheory:-divisors(n),list)); d:= nops(F); L:= Vector(d); L[1]:= 1; for i from 2 to d do if F[i] mod F[i-1] = 0 then L[i]:= L[i-1]+1 else L[i]:= 1 fi od; max(L) end proc: map(f, [$1..100]); # Robert Israel, Apr 20 2023
-
Mathematica
Table[Max@@Length/@Split[Divisors[n],Divisible[#2,#1]&],{n,100}]