cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A328028 Nonprime numbers n whose proper divisors (greater than 1 and less than n) have no consecutive divisibilities.

Original entry on oeis.org

1, 4, 6, 9, 10, 12, 14, 15, 21, 22, 24, 25, 26, 30, 33, 34, 35, 36, 38, 39, 45, 46, 48, 49, 51, 55, 57, 58, 60, 62, 63, 65, 69, 70, 72, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 105, 106, 108, 111, 115, 118, 119, 120, 121, 122, 123, 129, 132, 133, 134
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2019

Keywords

Examples

			The proper divisors of 18 are {2, 3, 6, 9}, and {3, 6} are a consecutive divisible pair, so 18 does not belong to the sequence.
The proper divisors of 60 are {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}, and none of {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 10}, {10, 12}, {12, 15}, {15, 20}, or {20, 30} are divisible pairs, so 60 belongs to the sequence.
		

Crossrefs

Positions of 0's or 2's in A328026.
1 and positions of 1's in A328194.
The version including primes is A328161.
Partitions with no consecutive divisibilities are A328171.
Numbers whose proper divisors have no consecutive successions are A088725.
Contains A001358.

Programs

  • Maple
    filter:= proc(n) local D,i;
      if isprime(n) then return false fi;
      D:= sort(convert(numtheory:-divisors(n) minus {1,n}, list));
      for i from 1 to nops(D)-1 do if (D[i+1]/D[i])::integer then return false fi od:
      true
    end proc:
    select(filter, [$1..300]); # Robert Israel, Oct 11 2019
  • Mathematica
    Select[Range[100],!PrimeQ[#]&&!MatchQ[DeleteCases[Divisors[#],1|#],{_,x_,y_,_}/;Divisible[y,x]]&]

A356228 Greatest size of a gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 3, 1, 2, 1, 2, 3, 1, 1, 5, 2, 2, 1, 2, 1, 4, 1, 3, 1, 1, 1, 4, 1, 1, 2, 6, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 3, 2, 2, 2, 1, 4, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless intervals: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 700 are {1,1,3,3,4}, with maximal gapless submultisets {1,1}, {3,3,4}, so a(700) = 3.
The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 3.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-maxima of A356226, firsts A356232.
The smallest instead of greatest size is A356227.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356069 counts gapless divisors.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Max@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333766(A356230(n)).
a(n) = A061395(A356231(n)).

A328161 Numbers n that are prime or whose proper divisors (greater than 1 and less than n) have no consecutive divisibilities.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 77, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2019

Keywords

Examples

			The proper divisors of 18 are {2, 3, 6, 9}, and {3, 6} are a consecutive divisible pair, so 18 does not belong to the sequence.
The proper divisors of 60 are {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}, and none of {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 10}, {10, 12}, {12, 15}, {15, 20}, or {20, 30} are divisible pairs, so 60 belongs to the sequence.
		

Crossrefs

Equals the union of A328028 and A000040.
Complement of A328189.
One, primes, and positions of 1's in A328194.
Partitions with no consecutive divisibilities are A328171.

Programs

  • Maple
    filter:= proc(n) local D,i;
      if isprime(n) then return true fi;
      D:= sort(convert(numtheory:-divisors(n) minus {1,n}, list));
      for i from 1 to nops(D)-1 do if (D[i+1]/D[i])::integer then return false fi od:
      true
    end proc:
    select(filter, [$1..100]); # Robert Israel, Oct 11 2019
  • Mathematica
    Select[Range[100],!MatchQ[DeleteCases[Divisors[#],1|#],{_,x_,y_,_}/;Divisible[y,x]]&]

A328189 Numbers n with at least one pair of consecutive divisible nontrivial divisors (greater than 1 and less than n).

Original entry on oeis.org

8, 16, 18, 20, 27, 28, 32, 40, 42, 44, 50, 52, 54, 56, 64, 66, 68, 75, 76, 78, 80, 81, 88, 92, 98, 99, 100, 102, 104, 110, 112, 114, 116, 117, 124, 125, 126, 128, 130, 136, 138, 140, 147, 148, 152, 153, 156, 160, 162, 164, 170, 171, 172, 174, 176, 184, 186
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2019

Keywords

Examples

			The nontrivial divisors of 42 are {2, 3, 6, 7, 14, 21}, with pairs of consecutive divisible divisors {3, 6} and {7, 14}, so 42 belongs to the sequence.
		

Crossrefs

Complement of A328161.
Positions of terms greater than 1 in A328194.
Partitions with a pair of consecutive divisible parts are A328221.

Programs

  • Mathematica
    Select[Range[200],MatchQ[DeleteCases[Divisors[#],1|#],{_,x_,y_,_}/;Divisible[y,x]]&]
    Select[Range[2,200],AnyTrue[Partition[Most[Rest[Divisors[#]]],2,1],Mod[#[[2]],#[[1]]] == 0&]&] (* Harvey P. Dale, Mar 14 2023 *)

A328194 Maximum length of a divisibility chain of consecutive nontrivial divisors of n (greater than 1 and less than n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 4, 1, 1, 1, 1, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 1, 1, 5, 1, 2, 0, 2, 1, 1, 0, 1, 0, 1, 2, 2, 1, 2, 0, 2, 3, 1, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 2, 3, 0, 2, 0, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2019

Keywords

Comments

The nontrivial divisors of n are row n of A163870.

Examples

			The nontrivial divisors of 272 are {2, 4, 8, 16, 17, 34, 68, 136} with divisibility chains {{2, 4, 8, 16}, {17, 34, 68, 136}}, so a(272) = 4.
		

Crossrefs

Positions of 1's are A328028 without 1.
The version with all divisors allowed is A328162.
Allowing n as a divisor of n gives A328195.
Indices of terms greater than 1 are A328189.
The maximum run-length of divisors of n is A055874(n).

Programs

  • Mathematica
    Table[Switch[n,1,0,?PrimeQ,0,,Max@@Length/@Split[DeleteCases[Divisors[n],1|n],Divisible[#2,#1]&]],{n,100}]
  • PARI
    A328194(n) = if(1==n || isprime(n), 0, my(divs=divisors(n), rl=0,ml=1); for(i=2,#divs-1,if(!(divs[i]%divs[i-1]), rl++, ml = max(rl,ml); rl=1)); max(ml,rl)); \\ Antti Karttunen, Dec 07 2024

Extensions

Data section extended up to a(105) by Antti Karttunen, Dec 07 2024

A328457 Length of the longest run of divisors > 1 of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2019

Keywords

Crossrefs

Records occur at A328448.
Positions of 0's and 1's are A088725.
The version that looks at all divisors (including 1) is A055874.
The number of successive pairs of divisors > 1 of n is A088722(n).
The Heinz number of the multiset of run-lengths of divisors of n is A328166(n).
The longest run of nontrivial divisors of n is A328458(n).

Programs

  • Mathematica
    Table[If[n==1,0,Max@@Length/@Split[Rest[Divisors[n]],#2==#1+1&]],{n,100}]
  • PARI
    A328457(n) = { my(rl=0,pd=0,m=0); fordiv(n, d, if(d>1, if(d>(1+pd), m = max(m,rl); rl=0); pd=d; rl++)); max(m,rl); }; \\ Antti Karttunen, Feb 23 2023

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 23 2023

A328195 Maximum length of a divisibility chain of consecutive divisors of n greater than 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 3, 3, 1, 2, 1, 5, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 6, 2, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 4, 2, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 3, 3, 1, 2, 1, 4, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2019

Keywords

Comments

Also the maximum length of a divisibility chain of consecutive divisors of n less than n.
The divisors of n (except 1) are row n of A027749.

Examples

			The divisors of 272 greater than 1 are {2, 4, 8, 16, 17, 34, 68, 136, 272}, with divisibility chains {{2, 4, 8, 16}, {17, 34, 68, 136, 272}}, so a(272) = 5.
		

Crossrefs

Allowing 1 as a divisor gives A328162.
Forbidding n as a divisor of n gives A328194.
Positions of 1's are A000040 (primes).
Indices of terms greater than 1 are A002808 (composite numbers).
The maximum run-length of divisors of n is A055874(n).

Programs

  • Mathematica
    Table[If[n==1,0,Max@@Length/@Split[DeleteCases[Divisors[n],1],Divisible[#2,#1]&]],{n,100}]
  • PARI
    A328195(n) = if(1==n, 0, my(divs=divisors(n), rl=0,ml=1); for(i=2,#divs,if(!(divs[i]%divs[i-1]), rl++, ml = max(rl,ml); rl=1)); max(ml,rl)); \\ Antti Karttunen, Dec 07 2024

Extensions

Data section extended up to a(105) by Antti Karttunen, Dec 07 2024
Showing 1-7 of 7 results.