cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328195 Maximum length of a divisibility chain of consecutive divisors of n greater than 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 3, 3, 1, 2, 1, 5, 2, 2, 2, 2, 1, 2, 2, 3, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 6, 2, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 4, 2, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 3, 3, 1, 2, 1, 4, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2019

Keywords

Comments

Also the maximum length of a divisibility chain of consecutive divisors of n less than n.
The divisors of n (except 1) are row n of A027749.

Examples

			The divisors of 272 greater than 1 are {2, 4, 8, 16, 17, 34, 68, 136, 272}, with divisibility chains {{2, 4, 8, 16}, {17, 34, 68, 136, 272}}, so a(272) = 5.
		

Crossrefs

Allowing 1 as a divisor gives A328162.
Forbidding n as a divisor of n gives A328194.
Positions of 1's are A000040 (primes).
Indices of terms greater than 1 are A002808 (composite numbers).
The maximum run-length of divisors of n is A055874(n).

Programs

  • Mathematica
    Table[If[n==1,0,Max@@Length/@Split[DeleteCases[Divisors[n],1],Divisible[#2,#1]&]],{n,100}]
  • PARI
    A328195(n) = if(1==n, 0, my(divs=divisors(n), rl=0,ml=1); for(i=2,#divs,if(!(divs[i]%divs[i-1]), rl++, ml = max(rl,ml); rl=1)); max(ml,rl)); \\ Antti Karttunen, Dec 07 2024

Extensions

Data section extended up to a(105) by Antti Karttunen, Dec 07 2024