A328208 Zeckendorf-Niven numbers: numbers divisible by the number of terms in their Zeckendorf representation (A007895).
1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14, 16, 18, 21, 22, 24, 26, 27, 30, 34, 36, 42, 45, 48, 55, 56, 58, 60, 66, 68, 69, 72, 76, 78, 80, 81, 84, 89, 90, 92, 93, 94, 96, 99, 102, 105, 108, 110, 111, 116, 120, 126, 132, 135, 140, 144, 146, 150, 152, 153, 156, 159, 162
Offset: 1
Keywords
Examples
12 is in the sequence since A007895(12) = 3 and 3 is a divisor of 12.
References
- Andrew Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Helen G. Grundman, Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272-276.
- Andrew Ray and Curtis Cooper, On the natural density of the k-Zeckendorf Niven numbers, J. Inst. Math. Comput. Sci. Math., Vol. 19 (2006), pp. 83-98.
Programs
-
Maple
fib:= combinat:-fibonacci: phi:= 1/2 + sqrt(5)/2: fibapp:= n -> phi^n/sqrt(5): invfib := proc(x::posint) local q, n; q:= evalf((ln(x+1/2) + ln(5)/2)/ln(phi)); n:= floor(q); if fib(n) <= x then while fib(n+1) <= x do n := n+1 end do else while fib(n) > x do n := n-1 end do end if; n end proc: zeck:= proc(x) local n; if x = 0 then 0 else n:= invfib(x); F[n] + zeck(x-fib(n)); fi end proc: filter:= n -> n mod nops(zeck(n)) = 0: select(filter, [$1..200]); # Robert Israel, Oct 25 2019
-
Mathematica
z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; aQ[n_] := Divisible[n, z[n]]; Select[Range[1000], aQ] (* after Alonso del Arte at A007895 *)