cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328248 a(n) = 1 if n is a squarefree number (A005117), otherwise a(n) = 1 + number of iterations of arithmetic derivative (A003415) needed to reach a squarefree number, or 0 if no such number is ever reached.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 2, 3, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 2, 3, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2019

Keywords

Examples

			For n = 9, it itself is not a squarefree number, while its arithmetic derivative A003415(9) = 6 is, so it took just one iteration to find a squarefree number, thus a(9) = 1+1 = 2.
For n = 50, which is not squarefree, and its first derivative A003415(50) = 45 also is not squarefree, but taking derivative yet again, gives A003415(45) = 39 = 3*13, which is squarefree, thus a(50) = 2+1 = 3.
		

Crossrefs

Cf. A328251, A005117, A328252, A328253 (indices of terms k=0, 1, 2, 3).

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };

Formula

a(4*n) = a(27*n) = 0 and in general, a(m * p^p) = 0, for any m >= 1 and any prime p.