cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328251 Row 1 of array A328250: numbers n whose k-th arithmetic derivative is never squarefree for any k >= 0.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212, 216, 220, 224, 225, 228, 232, 236, 240, 243, 244, 248, 250, 252, 256, 260, 264, 268, 270, 272
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2019

Keywords

Comments

This probably is NOT an intersection of A013929 and A099309.

Examples

			We see that 225 = 3^2 * 5^2 is not squarefree, and then when starting iterating with A003415, we obtain --> 240 --> 608 --> 1552 --> ... which is a trajectory that will never reach neither a prime nor any squarefree number at all, because already 240 = 2^4 * 3 * 5 is a member of A100716, whose terms all belong into A099309, as any divisor of the form p^p of n will be always present when taking its successive arithmetic derivatives. Thus 225 is included in this sequence.
		

Crossrefs

Row 1 of array A328250. Indices of zeros in A328248.
Cf. A013929, A100716 (a subsequence).
Differs from A100716 and A276079 for the first time at a(63) = 225, the term which is not present in them.

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
    isA328251(n) = (0==A328248(n));