cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328252 Numbers that are not squarefree, but whose arithmetic derivative (A003415) is.

Original entry on oeis.org

9, 18, 25, 45, 49, 63, 75, 90, 98, 117, 121, 126, 147, 150, 153, 169, 171, 175, 198, 234, 242, 245, 261, 279, 289, 294, 315, 325, 333, 338, 342, 350, 361, 363, 369, 387, 414, 423, 425, 450, 475, 477, 490, 495, 507, 522, 529, 539, 550, 558, 575, 578, 603, 605, 630, 637, 639, 650, 657, 666, 711, 722, 726, 735, 738, 774, 775, 801
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2019

Keywords

Examples

			18 = 2 * 3^2 is not squarefree, but its arithmetic derivative A003415(18) = 21 = 3*7 is, thus 18 is included in this sequence.
		

Crossrefs

Row 3 of array A328250. Positions of 2's in A328248.
Setwise difference A328234 \ A005117. Intersection of A013929 and A328234.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA328252(n) = (!issquarefree(n) && issquarefree(A003415(n)));
    
  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
    isA328252(n) = (2==A328248(n));