A328252 Numbers that are not squarefree, but whose arithmetic derivative (A003415) is.
9, 18, 25, 45, 49, 63, 75, 90, 98, 117, 121, 126, 147, 150, 153, 169, 171, 175, 198, 234, 242, 245, 261, 279, 289, 294, 315, 325, 333, 338, 342, 350, 361, 363, 369, 387, 414, 423, 425, 450, 475, 477, 490, 495, 507, 522, 529, 539, 550, 558, 575, 578, 603, 605, 630, 637, 639, 650, 657, 666, 711, 722, 726, 735, 738, 774, 775, 801
Offset: 1
Keywords
Examples
18 = 2 * 3^2 is not squarefree, but its arithmetic derivative A003415(18) = 21 = 3*7 is, thus 18 is included in this sequence.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); isA328252(n) = (!issquarefree(n) && issquarefree(A003415(n)));
-
PARI
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); }; isA328252(n) = (2==A328248(n));