cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348586 Numbers k such that abs(A328258(k)) = abs(A328258(k+1)).

Original entry on oeis.org

1, 11, 40, 179, 695, 928, 991, 1079, 2772, 2799, 2839, 6687, 7632, 7739, 7960, 8568, 9347, 10703, 11008, 11472, 12847, 12935, 13580, 14064, 16000, 16260, 17135, 20944, 26432, 27999, 35399, 37236, 42251, 42756, 44199, 55308, 56419, 68976, 70127, 74671, 77748, 83099
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2021

Keywords

Comments

Equivalently, numbers k such that A328258(k) = -A328258(k+1).

Examples

			1 is a term since abs(A328258(1)) = abs(A328258(2)) = 1.
11 is a term since abs(A328258(11)) = abs(A328258(12)) = 12.
		

Crossrefs

The unitary version of A348585.
Cf. A328258.
Similar sequences: A002961, A064125, A206368, A333261.

Programs

  • Mathematica
    f[p_, e_] := 1 - (-1)^p*(p^e); s[1] = 1; s[n_] := Abs[Times @@ (f @@@ FactorInteger[n])]; Select[Range[10^5], s[#] == s[# + 1] &]
  • PARI
    f(n) = sumdiv(n, d, if (gcd(d, n/d) == 1, (-1)^(d + 1) * d)); \\ A328258
    isok(k) = f(k) + f(k+1) == 0; \\ Michel Marcus, Oct 24 2021

A348584 Numbers k such that k | A328258(k).

Original entry on oeis.org

1, 12, 56, 180, 992, 16256, 127400, 441000, 2646000, 67100672, 325458000, 2758909440, 17179738112, 274877382656
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2021

Keywords

Comments

The corresponding ratios A113184(k)/k are 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, ...
If p is a Mersenne exponent (A000043), then 2^p*(2^p-1) (twice an even perfect number) is a term with ratio A328258(k)/k = -1.
If there exists an odd term k, then it is a unitary multiply-perfect number (A327158), since A328258(k) = A034448(k) for an odd k.

Examples

			12 is a term since A328258(12) = -12 is divisible by 12.
		

Crossrefs

The unitary version of A348583.
A139256 is a subsequence.

Programs

  • Mathematica
    f[p_, e_] := 1 - (-1)^p*(p^e); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[3*10^6], Divisible[s[#], #] &]

A360156 a(n) is the sum of the even unitary divisors of 2*n.

Original entry on oeis.org

2, 4, 8, 8, 12, 16, 16, 16, 20, 24, 24, 32, 28, 32, 48, 32, 36, 40, 40, 48, 64, 48, 48, 64, 52, 56, 56, 64, 60, 96, 64, 64, 96, 72, 96, 80, 76, 80, 112, 96, 84, 128, 88, 96, 120, 96, 96, 128, 100, 104, 144, 112, 108, 112, 144, 128, 160, 120, 120, 192, 124, 128
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2023

Keywords

Comments

a(n) is the unitary analog of A146076(2*n).

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; a[n_] := Module[{e = IntegerExponent[n, 2]}, 2^(e + 1) * usigma[n/2^e]]; Array[a, 100]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + 1)} ;
    a(n) = {my(e = valuation(n, 2)); (1 << (e+1)) * usigma(n >> e); }

Formula

a(n) = Sum_{even d|(2*n), gcd(d, 2*n/d)=1} d.
a(n) = A034448(2*n) - A192066(2*n).
a(n) = A192066(2*n) - A328258(2*n).
a(n) = A171977(n) * A192066(n).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (7*zeta(3)).
Dirichlet g.f. of b(n): (zeta(s)*zeta(s-1)/zeta(2*s-1))*(2^(s+1)-2)/(2^(2*s)-2), where b(n) is the sum of the even unitary divisors of n: b(n) = a(n/2) if n is even and 0 otherwise.
Showing 1-3 of 3 results.