A328288 Triangle T(m,n) = # { k | concat(mk,nk) has no digit twice or more }, m >= n >= 0.
0, 986409, 0, 438404, 304, 0, 572175, 153, 157, 0, 219202, 197, 124, 97, 0, 109601, 221, 156, 69, 171, 0, 255752, 73, 88, 142, 68, 69, 0, 140515, 129, 73, 81, 86, 62, 46, 0, 109601, 189, 88, 40, 67, 48, 51, 24, 0, 432645, 89, 80, 77, 31, 63, 68, 41, 20, 0, 0, 0, 132, 80, 90, 58, 32, 63, 99, 37, 0
Offset: 0
Examples
The table reads : 0, (m=0) 986409, 0, (m=1) 438404, 304, 0, (m=2) 572175, 153, 157, 0, (m=3) 219202, 197, 124, 97, 0, (m=4) 109601, 221, 156, 69, 171, 0, (m=5) 255752, 73, 88, 142, 68, 69, 0, (m=6) 140515, 129, 73, 81, 86, 62, 46, 0, (m=7) 109601, 189, 88, 40, 67, 48, 51, 24, 0, (m=8) 432645, 89, 80, 77, 31, 63, 68, 41, 20, 0, (m=9) 0, 0, 132, 80, 90, 58, 32, 63, 99, 37, 0, (m=10) 90212, 0, 106, 69, 79, 50, 30, 45, 30, 38, 0, 0, (m=11) 127163, 76, 0, 96, 31, 62, 54, 27, 31, 49, 41, 27, 0, (m=12) 75768, 84, 72, 0, 31, 58, 47, 26, 23, 34, 43, 25, 20, 0, (m=13) 62436, 100, 64, 52, 0, 51, 44, 51, 42, 22, 38, 27, 18, 20 0, (m=14) ... The terms corresponding to T(2,1) = 304 and T(3,1) = 153 are given in Eric Angelini's post to the SeqFan list. Column 0 is A328287 (number of multiples of m that have only distinct and nonzero digits).
Links
- M. F. Hasler, in reply to E. Angelini, Fractions with no repeated digits, SeqFan list, Oct. 10, 2020.
Formula
T(m,n) = 0 whenever m == n (mod 10).
T(m,n) = T(n,m) for all m, n >= 0, if the condition m > n is dropped.
Comments