A328300 Number T(n,k) of n-step walks on cubic lattice starting at (0,0,0), ending at (0,k,n-k), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 26, 15, 1, 1, 31, 82, 82, 31, 1, 1, 63, 237, 343, 237, 63, 1, 1, 127, 651, 1257, 1257, 651, 127, 1, 1, 255, 1730, 4256, 5594, 4256, 1730, 255, 1, 1, 511, 4494, 13669, 22411, 22411, 13669, 4494, 511, 1, 1, 1023, 11485, 42279, 83680, 103730, 83680, 42279, 11485, 1023, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 15, 26, 15, 1; 1, 31, 82, 82, 31, 1; 1, 63, 237, 343, 237, 63, 1; 1, 127, 651, 1257, 1257, 651, 127, 1; 1, 255, 1730, 4256, 5594, 4256, 1730, 255, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Lattice path
- Wikipedia, Self-avoiding walk
Crossrefs
Programs
-
Maple
b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add( add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))( sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1])) end: T:= (n, k)-> b(sort([0, k, n-k])): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[l_List] := b[l] = If[l[[-1]] == 0, 1, Function[r, Sum[Sum[Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {k, r}], {j, r}], {i, r}]][{-1, 0, 1}]]; T[n_, k_] := b[Sort[{0, k, n - k}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 10 2020, after Maple *)
Formula
T(n,k) = T(n,n-k).