A328302 For n > 1, a(n) is the least number > 0 for which it takes n-2 steps to reach a squarefree number by applying arithmetic derivative (A003415) zero or multiple times. a(1) = 4 is the least number for which no squarefree number is ever reached.
4, 1, 9, 50, 306, 5831, 20230, 52283, 286891, 10820131, 38452606
Offset: 1
Examples
a(2) = 1 is the least number that is squarefree already at the "zeroth derivative". 52283 = 7^2 * 11 * 97 is not squarefree, and applying A003415 successively 1-6 times yields numbers 20230, 19431, 14250, 21175, 15345, 15189. Only the last one of these 15189 = 3*61*83 is squarefree, and there are no numbers < 52283 that would produce as long (6) finite chain of nonsquarefree numbers, thus a(2+6) = 52283.
Comments