A328305 Numbers that are cubefree, but not squarefree and whose first arithmetic derivative is not squarefree, but some k-th (with k >= 2) derivative is.
50, 99, 207, 306, 531, 549, 725, 747, 819, 931, 1083, 1175, 1611, 1775, 1899, 2057, 2075, 2299, 2331, 2367, 2499, 2525, 2842, 2853, 2891, 3425, 3577, 3610, 3771, 3789, 3843, 4059, 4149, 4311, 4475, 4575, 4626, 4693, 4775, 4998, 5239, 5274, 5341, 5547, 5634, 5706, 5715, 5746, 5819, 5949, 6147, 6223, 6275, 6381, 6413, 6475, 6575
Offset: 1
Keywords
Examples
50 is not squarefree, as 50 = 2 * 5^2, and neither its arithmetic derivative A003415(50) = 45 = 3^2 * 5 is squarefree, but its second derivative A003415(45) = 39 = 3*13 is, thus 50 is included in this sequence.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); }; isA067259(n) = (2==A051903(n)); isA328305(n) = (isA067259(n)&&(A328248(n)>2));
Comments