A328312 a(n) is the product of (1+A328311(x)) applied over all values x obtained when arithmetic derivative (A003415) is iterated starting from x=n, until 1 is encountered, or 0 if no 1 is ever encountered (in which case such product would be infinite).
1, 1, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 1, 6, 0, 0, 1, 4, 1, 0, 4, 2, 1, 0, 2, 0, 0, 0, 1, 2, 1, 0, 12, 2, 0, 0, 1, 8, 0, 0, 1, 2, 1, 0, 0, 6, 1, 0, 6, 0, 0, 0, 1, 0, 0, 0, 4, 2, 1, 0, 1, 24, 0, 0, 12, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 12, 2, 1, 0, 0, 2, 1, 0, 4, 0, 0, 0, 1, 0, 0, 0, 4, 18, 0, 0, 1, 12, 0, 0, 1, 0, 1, 0, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); A328311(n) = if(n<=1,0,1+(A051903(A003415(n)) - A051903(n))); A328312(n) = { my(m=1); while(n>1, m *= (1+A328311(n)); n = A003415checked(n)); (n*m); };