A328313 For all such terms k in A143293 (partial sums of primorials) for which A129251(k) = 0, the term A276085(k) is included here.
2, 4, 2312, 3217644767340672907899084554132
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8
Programs
-
PARI
A002110(n) = prod(i=1,n,prime(i)); A143293(n) = if(n==0, 1, my(P=1, s=1); forprime(p=2, prime(n), s+=P*=p); (s)); \\ From A143293. A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); }; A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; k=0; for(n=1,12,t = A143293(n); u = A276085(t); if(A276086(u) == t, k++; print1(u,", ")));
Comments