cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328327 Numbers k such that both k and k+1 are Zumkeller numbers (A083207).

Original entry on oeis.org

5984, 7424, 21735, 21944, 26144, 27404, 39375, 43064, 49664, 56924, 58695, 61424, 69615, 70784, 76544, 77175, 79695, 81080, 81675, 82004, 84524, 84644, 89775, 91664, 98175, 103455, 104895, 106784, 109395, 111824, 116655, 116864, 120015, 121904, 122264, 126224
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2019

Keywords

Comments

Terms k such that both k and k+1 are primitive Zumkeller numbers (A180332) are 82004, 84524, 158235, 516704, 2921535, 5801984, ... (A361934).
There are infinitely many such k as proven by Somu et al. (2023). - Duc Van Khanh Tran, Dec 07 2023

Crossrefs

Subsequence of A096399.

Programs

  • Mathematica
    zumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; zq1 = False; s = {}; Do[zq2 = zumkellerQ[n]; If[zq1 && zq2, AppendTo[s, n - 1]]; zq1 = zq2, {n, 2, 10^5}]; s (* after T. D. Noe at A083207 *)
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A328327_gen(startvalue=1): # generator of terms >= startvalue
        m = -1
        for n in count(max(startvalue,1)):
            d = divisors(n)
            s = sum(d)
            if s&1^1 and n<<1<=s:
                d = d[:-1]
                s2, ld = (s>>1)-n, len(d)
                z = [[0 for  in range(s2+1)] for  in range(ld+1)]
                for i in range(1, ld+1):
                    y = min(d[i-1], s2+1)
                    z[i][:y] = z[i-1][:y]
                    for j in range(y,s2+1):
                        z[i][j] = max(z[i-1][j],z[i-1][j-y]+y)
                    if z[i][s2] == s2:
                        if m == n-1:
                            yield m
                        m = n
                        break
    A328327_list = list(islice(A328327_gen(),5)) # Chai Wah Wu, Feb 13 2023