A328327 Numbers k such that both k and k+1 are Zumkeller numbers (A083207).
5984, 7424, 21735, 21944, 26144, 27404, 39375, 43064, 49664, 56924, 58695, 61424, 69615, 70784, 76544, 77175, 79695, 81080, 81675, 82004, 84524, 84644, 89775, 91664, 98175, 103455, 104895, 106784, 109395, 111824, 116655, 116864, 120015, 121904, 122264, 126224
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Giovanni Resta)
- Sai Teja Somu, Andrzej Kukla, and Duc Van Khanh Tran, Some results on Zumkeller numbers, arXiv:2310.14149 [math.NT], 2023.
Programs
-
Mathematica
zumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; zq1 = False; s = {}; Do[zq2 = zumkellerQ[n]; If[zq1 && zq2, AppendTo[s, n - 1]]; zq1 = zq2, {n, 2, 10^5}]; s (* after T. D. Noe at A083207 *)
-
Python
from itertools import count, islice from sympy import divisors def A328327_gen(startvalue=1): # generator of terms >= startvalue m = -1 for n in count(max(startvalue,1)): d = divisors(n) s = sum(d) if s&1^1 and n<<1<=s: d = d[:-1] s2, ld = (s>>1)-n, len(d) z = [[0 for in range(s2+1)] for in range(ld+1)] for i in range(1, ld+1): y = min(d[i-1], s2+1) z[i][:y] = z[i-1][:y] for j in range(y,s2+1): z[i][j] = max(z[i-1][j],z[i-1][j-y]+y) if z[i][s2] == s2: if m == n-1: yield m m = n break A328327_list = list(islice(A328327_gen(),5)) # Chai Wah Wu, Feb 13 2023
Comments