A328340 Number of geometrically distinct symmetric open knight's tours on a 4 X (2n-1) chessboard.
0, 2, 3, 17, 112, 620, 2821, 13805, 69036, 327978, 1540792, 7274254, 34083946, 158284977, 732296355, 3377163866, 15513066609, 71017218563, 324217343701, 1476439351581, 6707726917103, 30409720266127, 137599767926968, 621531352302268, 2802892252591572, 12621236296192889
Offset: 1
Keywords
Examples
a(2) = 2 because there are 2 symmetric 4 X 3 tours: +----+----+----+----+ +----+----+----+----+ | 8 | 11 | 6 | 3 | | 1 | 4 | 7 | 10 | +----+----+----+----+ +----+----+----+----+ | 1 | 4 | 9 | 12 | | 8 | 11 | 2 | 5 | +----+----+----+----+ +----+----+----+----+ | 10 | 7 | 2 | 5 | | 3 | 6 | 9 | 12 | +----+----+----+----+ +----+----+----+----+
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..250
- George Jellis, Knight's tours of Four Rank Boards
Comments